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We are delighted to welcome you to the Belgian-
German WE-Heraeus Seminar: “Machine Learning 
for Spectroscopy” (ML4SPEC2025). This event brings 
together experts in spectroscopy, data science, and 
machine learning to explore the latest 
methodologies that enhance the analysis and 
interpretation of complex spectral data. 

The conference focuses on AI-driven spectral 
analysis, advanced classification techniques, and 
data-driven prediction models applied to various 
spectroscopic methods, including Fourier Transform 
Infrared (FTIR), Raman, near-infrared (NIR), 
fluorescence, and core-electron techniques like X-
ray absorption (XAS), photoelectron (XPS), and 
fluorescence (XRF) spectroscopy. Discussions will 
also delve into deep learning approaches for 
analyzing vibrational properties, light-driven 
processes, and excited state dynamics. 

We would like to thank you all for such a wide 
interest in participation to ML4Spec2025.  

We extend our sincere gratitude to our sponsors for 
their generous support, which has been 
instrumental in making this seminar possible. We 
warmly thank the Wilhelm and Else Heraeus 
Foundation, the EUSpecLab Doctoral Network, and 
the New Technologies Research Centre at the 
University of West Bohemia for their commitment to 
fostering interdisciplinary research and innovation. 

We wish you that this seminar provide a stimulating 
environment for collaboration and the exchange of 
ideas. 

The ML4Spec2025 Organizing Committee 

Welcome to ML4Spec2025! 
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Committee 

The committee comprises 11 PhD students of the EUSpecLab 
Doctoral Network. The aim of the project is to form the next 
generation of theoretical material scientists (physicists and 
chemists). 
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Conference venue:
Vrije Universiteit Brussel
Building D 
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Program 

Day one (26.05)
• 8:15-8:45 Registration
• 8:45-9:00 Welcome address
• 9:00-9:45 Giorgia Fugallo: Machine Learning for Phonon 

Engineering: Toward Predictive Thermal and Spectroscopic 
Modeling

• 9:45-10:30 Toon Verstraelen: Explicit Electrons in Machine 
Learning Potentials

• 10:30-11:00 Coffee break
• 11:00-12:00 Xavier Gonze: High-throughput calculations of 

vibrational properties and their analysis
• 12:00-14:00 Lunch break
• 14:00-14:45 Pierre-Paul De Breuck: Conditioning on Spectra for 

Generative Crystal Design
• 14:45-15:30 Michiel J. van Setten: Spectroscopy and AI in 

semiconductor technology research
• 15:30-15:45 Coffee break
• 15:45-17:00 Contributed talks: Malte Grunert, Nathalie Brun, 

Dario Baum, Arno Annys, Sabana Shabnam
• 17:00-17:35 Flash talks: Sourour Ayari, Scheffler Johannes, 

Gorfer Alexander, Adhyatma Abdurrahman, Karimi Nejad Sara, 
Hakeem Luqman, Marco Stecca

• 17:35:18:30 Poster session
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Program 

Day two (27.05)
• 8:45-9:00 WE-Heraeus Foundation Introduction by Dr. Stefan 

Jorda
• 9:00-9:45 Annika Bande: Spectra Prediction and Peak 

Assignment using Graph Neural Networks
• 9:45-10:30 Dorothea Golze: Accurate XPS predictions of 

amorphous materials: A machine-learning model combining 
DFT and GW

• 10:30-11:00 Coffee break
• 11:00-12:00 Venkat Kapil: Vibrational spectroscopy of 

molecules, condensed phases & interfaces using machine 
learning and quantum statistical mechanics

• 12:00-14:00 Lunch break
• 14:00-14:45 Aloïs Castellano: Phonons and anharmonicity in 

the time of machine-learning interatomic potentials
• 14:45-15:30 Ke Chen: Enhancing Vibrational Spectroscopy 

Predictions Using Machine Learning
• 15:30-15:45 Coffee break
• 15:45-17:00 Contributed talks: Andrea Della Valle, Laurens de 

Boer, Max Großmann, Daria M. Tomecka, Joël Eymery
• 17:00-18:30

Poster session
• 19:30 Social dinner
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Day three (28.05)
• 9:00-9:45 Matthew L. Evans: Decentralized materials research 

data management, curation and dissemination for accelerated 
materials discovery

• 9:45-10:30 Lukas Pielsticker: Automatic Quantification of 
Transition Metal X-ray Photoelectron Spectra using Convolutional 
Neural Networks

• 10:30-11:00 Coffee break
• 11:00-12:00 Maria K. Y. Chan: Data- and theory-informed 

approaches for accelerating the capture and interpretation of 
core-level spectra

• 12:00-13:00 Lunch break
• 13:00-13:45 Vaclav Smidl: Deep Generative Models for Tractable 

Probabilistic Inference over Molecular Graphs
• 13:45-15:00 Contributed talks: Mandira Das, Thomas P. van 

Waas, Trung-Phuc Vo, Strocov Vladimir, Frederico Zecchi
• 15:00-15:15

Best poster award, closing remarks
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•11:00-12:00 Xavier Gonze: High-throughput calculations of vibrational 
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•14:00-14:45 Pierre-Paul De Breuck: Conditioning on Spectra for Generative 
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Machine Learning for Phonon 
Engineering: Toward Predictive 
Thermal and Spectroscopic 
Modeling 
 
Giorgia Fugallo,  
Laboratoire de Physique, École Normale Supérieure, 
Paris, France 

 
giorgia.fugallo@ens.fr  

 
 
Understanding and controlling thermal properties at 
the nanoscale is central to the development of next-
generation electronic, photonic, and energy devices. 
In this context, phonons play a pivotal role, 
governing heat transport, energy dissipation, and 
spectral signatures in both 3D and low-dimensional 
materials.  
Recent advances in machine learning (ML) open up 
new opportunities to complement and extend this 
approach. From accelerating the construction of 
interatomic force fields and predicting thermal 
conductivities, to enabling high-throughput screening 
of thermal materials and interpreting vibrational 
spectroscopies, ML offers a powerful set of tools to 
address limitations of conventional first-principles 
simulations. 
In this talk, I will present how phonon engineering, 
thermal transport, and vibrational spectroscopy can 
intersect with machine learning and how physically-
informed models can help bridge the gap between 
atomistic insight and data-driven discovery[1-9]. 
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Explicit Electrons in Machine 
Learning Potentials 
 
Maarten Cools-Ceuppens1, Joni Dambre2, Toon 
Verstraelen1 

1Center for Molecular Modeling (CMM), Ghent University – 
Technologiepark-Zwijnaarde 46, B-9052 Gent, Belgium 

2IDLab, Electronics and Information Systems Department, 
Ghent University – imec, Technologiepark-Zwijnaarde 126, 
B-9052 Gent, Belgium 

 
toon.verstraelen@ugent.be 
 
A suitable model for the potential energy surface 
(PES) is essential for any molecular simulation. 
Depending on the application of interest and the 
physics and chemistry at hand, different 
requirements such as accuracy, ability to describe 
relevant processes, and computational efficiency 
must be balanced. Machine-learning potentials have 
reached unprecedented trade-offs between these 
requirements: they can be trained to mimic density 
functional theory (or even better) training data with 
arbitrary precision, while being computationally 
much more efficient than electronic structure 
methods. 
 
Despite their popularity and promise, 
machine-learning potentials have an important 
limitation: they are inherently short-ranged. The 
restriction to short ranges has two origins. First, it is 
common to use short real-space cutoffs to 
characterize the local environment of an atom. (To 
some extent, message-passing networks circumvent 
this limitation: multiple message-passing iterations 
take into account information from beyond the cutoff 
distance.) Second, the number of possible 
configurations of atoms within a larger cutoff sphere 
is enormous, making it impossible to generate 
relevant examples for all possibilities. Whenever 
long-range interactions are important, a physical 
model is unavoidable. 
 
Many physically motivated models for long-range 
electrostatics and polarization have been developed 
for normal force fields and were later combined with 
machine-learning potentials, which handle the 
short-range interactions. Advantages and 
disadvantages of different models for long-range 
interactions will be discussed, and a new framework, 
the electron machine-learning potential (eMLP), will 
be presented. [1] eMLP belongs to the class of 
explicit electron models, [2] which approximate the 
electron distribution in more detail than a 
conventional force field with fixed charges, or even a 
conventional polarizable force field with atomic 
dipoles. Electrons or electron pairs are introduced as 
mobile particles with their formal charge and the 
freedom to polarize due to changes in geometry or 
the application of an external field. This is illustrated 
for the case of water in Figure 1. A fundamental 
advantage of eMLP over variable charge models, 
such as Qeq [3], is that all sites carry a fixed net 

charge, allowing the polarization of a solid to be 
uniquely defined. [4] 
By construction, eMLP is well equipped to describe 
the geometry dependence of the electronic charge 
distribution: electron (pair) particles are located 
between nuclei and exhibit anistropic response due 
to alignment with chemical bonds. As fragments 
rotate or vibrate, their static and response properties 
naturally follow these changes in geometry. In eMLP, 
this enabled accurate predictions of IR activity, even 
for molecules on which eMLP had never been 
trained. 
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Figure 1. Illustration of the charge centers in the eMLP 
model. 
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High-throughput calculations of 
vibrational properties and their 
analysis 
 
Xavier Gonze1 
1Université catholique de Louvain (IMCN/MODL), 8 
Chemin des étoiles B-1348 Belgium. 
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The knowledge of the vibrational properties of a 
material is of key importance to understand physical 
phenomena such as infra-red and Raman 
spectroscopy, thermal conductivity, ferroelectricity, 
as well as the temperature dependence of many 
properties, including thermodynamic ones. However, 
detailed experimental vibrational (phonon) spectra 
are available only for a limited number of materials, 
which hinders the large-scale analysis of vibrational 
properties and their derived quantities.  
 
I will first present ab initio calculations of the phonon 
dispersion and vibrational density of states for 1521 
semiconductor compounds [1] based on density 
functional perturbation theory. The data is collected 
along with derived dielectric and thermodynamic 
properties.  The procedure used to obtain the results 
will be described, as well as the details of the 
provided database and a validation based on the 
comparison with experimental data, see Fig.1. 
 
Then, I will describe the usage of such database to 
examine electron-phonon interaction [2], that is also 
central to condensed matter, e.g. through electrical 
resistance, superconductivity or the formation of 
polarons, and that has a strong impact on 
observables such as band gaps or optical spectra. 
The most common framework for band energy 
corrections and polaron formation is the Fröhlich 
model, which often agrees qualitatively with 
experiments in polar materials, but has limits for 
complex cases. A generalized version includes 
anisotropic and degenerate electron bands, and 
multiple phonons. Trends are examined for the 
Fröhlich model on 1260 materials. The limitations of 
the Fröhlich model and its perturbative treatment is 
tested, in particular the large polaron hypothesis. 
Among our extended dataset most materials host 
perturbative large polarons, but there are many 
instances that are non-perturbative and/or localize 
on distances of a few bond lengths, see Fig.2. 
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Figure 1. Relative error of selected calculated phonon 
frequencies with respect to experimental data. The test set 
consists of the frequencies at the Γ point for which 
experimental values are available in literature. Each of the 
53 considered materials is identified by a unique 
combination of symbol and color. The bar plot shows the 
distribution of the errors [1]. 
 

 
Figure 2. Upper panel : distribution of electron-phonon 
coupling strength (α) and hole polaron radii (aP)  for  hole 
polarons in 1260 materials [2]. The color denotes 
materials that contain chemical elements from groups 15 
(pnictides - green) to 17 (halides - blue) of the periodic 
table. When no such element is present, brown is used. 
Lower panel : histogram and cumulative frequency for the 
electron-phonon coupling strength. α bigger than 6 
correspond to the strong coupling regime, while aP lower 
than 10 Bohr corresponds to small polarons. 



Conditioning on Spectra for 
Generative Crystal Design 
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Generative models can significantly accelerate the 
discovery and design of crystal structures. In this 
talk, I will introduce Matra-Genoa [1], an 
autoregressive transformer model designed to 
generate stable crystals. By leveraging invertible 
tokenized representations of symmetrized crystals, 
our approach enables sampling from a hybrid action 
space while conditioning on key properties such as 
the distance to the convex hull. Beyond stability, I 
will discuss early efforts to use generative modeling 
for discovering materials with tailored optical 
properties. Optical spectra in crystalline materials 
remain an underexplored frontier, despite their 
potential for photovoltaics, photocatalysis, 
epsilon-near-zero applications, and more. By 
conditioning Matra-Genoa on spectral 
features—such as the dielectric function—we aim to 
design materials optimized for specific optical 
applications, opening new possibilities for 
spectroscopy-driven materials discovery. 
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Figure 1. Schematic representation of conditioned 
generation of crystal structures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Spectroscopy and AI in 
semiconductor technology 
research 
 
Michiel J. van Setten 
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The semiconductor industry is arguably one of the, if 
not the, most technologically advanced industries. To 
keep innovation moving along, many types of 
spectroscopies are continuously used to gain more 
understanding in, and ultimately, improve the 
involved materials and processes. Also, the ideas 
and influences of the development of artificial 
intelligence enter this industry at many dimensions. 
 
In this talk I will introduce some of the key processes 
involved in the production of semiconductor devices 
and show where the different spectroscopies provide 
crucial insights. The main example will focus on the 
research to understand and improve the photo 
lithography process, see Fig. 1. Under the exposure 
to of EUV light of 92 eV, the photo active resist 
material undergoes a chemical change that transfers 
the pattern of light onto the wafer. By combing 
measured spectra at increasing exposure doses to 
computed spectra we can pinpoint which atomistic 
changes are taking place, see Fig. 2.1,2  
 
Next, we will visit two other topics, related to the 
deposition of the materials layers. The first is the 
estimation of reaction energy barriers3, the second 
the estimation of vapor pressure4. Both are 
quantities that are important to improve the 
chemistries of atomic layer deposition and etch. Both 
are also very difficult to compute directly from first 
principles. But, by using descriptors that contain 
‘simple’ first principles results, machine learning 
models can be trained that are transferable and 
have predictive power and can be used to optimize 
the processes. 
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Figure 1. Schematic steps of the photolithographic 
process. PAB = post apply bake. PEB = post-exposure 
bake. 
 
 

 
 
Figure 2. Computed spectrum of the unexposed resist 
highlighting the individual contributions of different (a) 
atomic orbitals and (b) molecular components. The 
spectra were computed assuming the nominal molar 
composition. Numbers 1–6 identify the most relevant 
peaks. Arrows highlight the peaks 1, 4 and 5 that are 
observed to be degrading in experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Spectra Prediction and Peak 
Assignment using Graph Neural 
Networks 
 
Annika Bande1,2, Amir Kotobi3, Kanishka Singh2,4, 
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The use of sophisticated machine learning (ML) 
models, such as graph neural networks (GNNs) to 
predict complex molecular properties or all kinds of 
spectra has grown rapidly [1,2]. However, other than 
known from quantum chemistry calculations of 
spectra, the peak assignment is no integral part of 
black-box ML models. Explainable artificial 
intelligence offers tools to open the box: Feature 
attribution serves to determine the contributions of 
various atoms in the molecules (nodes in the GNN) 
to the peaks observed in the spectrum (see figure). 
By numerically comparing this peak assignment to 
the core and virtual orbitals from the 
quantum-chemical calculations underlying the 
exemplary X-ray absorption spectra data set of small 
organic molecules, we demonstrate how the atomic 
contributions deliver spectra interpretation [3]. 
Robustness tests further demonstrate the reliability 
of the predictions. 
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Figure 1. Workflow of creating a molecular graph, training 
and executing the graph neural network to return X-ray 
absorption spectra. Peak assignment is done through the 
analysis of the accumulated weights of the nodes at every 
energy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Accurate XPS predictions of 
amorphous materials: A 
machine-learning model 
combining DFT and GW 
 
Dorothea Golze 
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The GW approach has become the method of 
choice for the computation of addition and removal 
energies of valence electrons. However, core-level 
spectroscopy was widely uncharted in GW. In the 
last years, we advanced the GW methodology to 
deep core excitations as measured by X-ray 
photoelectron spectroscopy (XPS) combining exact 
numeric algorithms in the real frequency domain with 
partial self-consistency and relativistic corrections 
[1-4]. We benchmarked our core-level GW 
implementation for 65 1s core excitations, for which 
we find that GW reproduces absolute molecular 1s 
excitations within 0.3 eV of experiment and relative 
binding energies with average deviations smaller 
than 0.2 eV [2,4].  
The application of our core-level GW method to 
disordered structures is computationally challenging 
due to the high computational cost of the method 
and the need for extensive structural sampling.  To 
enable the prediction of XPS for amorphous 
materials, we developed a kernel ridge regression 
machine learning (ML) model based on a 
comprehensive database of density functional theory 
(DFT) and GW data. We applied our combined 
DFT-GW-ML approach to materials containing 
carbon, hydrogen and oxygen and showed that we 
obtain qualitative and quantitative agreement with 
experiment, resolving spectral features within 0.1 eV 
of reference experimental spectra [5]. 
Generating GW training data is the primary 
computational bottleneck in our DFT-ML-GW 
workflow. I will present our recent algorithmic 
advances that reduce the system-size scaling of 
core-level GW calculations, cutting the cost of 
training-data generation by approximately an order 
of magnitude [6]. 
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Figure 1.  XPS prediction of amorphous carbon structures 
with GW accuracy using a DFT-GW-ML model. Figure 
from Ref. [5]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Vibrational spectroscopy of 
molecules, condensed phases & 
interfaces using machine learning 
and quantum statistical mechanics 
Venkat Kapil1,2 
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Vibrational spectroscopy is a cornerstone technique 
for characterizing molecules, materials, and atomic-
scale phenomena. However, mapping vibrational 
spectra to local structure and dynamics remains 
challenging, requiring first-principles simulations or 
calculations. A truly predictive approach to 
vibrational spectra must accurately describe 
electronic structure for interatomic interactions and 
t ransi t ion d ie lect r ic response, whi le a lso 
incorporating quantum nuclear motion to capture 
zero-point fluctuations, tunneling, and non-Condon 
effects. 
 
In this talk, I will discuss our progress in modeling 
vibrational spectra with a fully quantum description 
by employing a combination of machine learning 
interatomic potentials [1,2,3], machine learning 
models of the dielectric response tensor [3,4], and a 
novel technique known as PIGS to incorporate 
quantum corrections to classical trajectories [5]. 
These approaches achieve high accuracy and 
computational efficiency while accounting for the 
aforementioned effects. I will present showcase 
examples ranging from the spectroscopy of small 
drug-like molecules [6] to the air-water interface [4]. 
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Figure. A schematic demonstrating quantum mechanical 
accuracy in predicting the O—H region of the IR spectrum 
of hexagonal ice at classical computational cost.  
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Atomic vibrations are central to many physical 
properties of materials, from thermal conductivity 
and thermodynamic behavior to electrical transport 
and spectroscopic signatures. The workhorse to 
describe atomic vibrations in solids is the harmonic 
approximation, which reformulates the atomic 
dynamics in term of phonons: quantized 
quasiparticles of lattice vibrations. However, the 
simplicity of the harmonic approximation limits its 
accuracy, and contributions beyond the harmonic 
ones, named anharmonic, are often needed to 
describe the complex motion of atom in solids. To 
include anharmonicity, the most complete solution is 
to sample the canonical ensemble of the system. 
This is usually done with ab initio molecular 
dynamics where atoms positions evolve following 
forces computed from density functional theory, 
allowing then to compute properties through 
averages. However, the computational cost of the 
method limits the time and length scale accessible 
through such simulations. In recent years, 
machine-learning interatomic potentials (MLIPs) 
have significantly reduced this computational cost by 
replacing expensive DFT force evaluations with fast 
and accurate surrogate models trained on ab initio 
data. However, once a trajectory has been obtained, 
a key challenge remains: how to extract physically 
meaningful vibrational properties from raw atomic 
motion. This is where a phonon picture can come 
back to play a critical role.  In this talk, I will 
introduce theories of anharmonic lattice dynamics [1, 
2,3,4] that allows to interpret finite-temperature 
molecular dynamics in terms of renormalized 
phonon quasiparticles, thus providing direct access 
to spectroscopic observables or transport properties. 
In particular, I will show how combining these 
methods with MLIPs offers an efficient and accurate 
framework to study vibrational properties in materials 
well beyond the harmonic approximation. 
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Figure 1. Phonon spectral function of FCC helium using 
anharmonic lattice dynamics (top) and perturbation theory 
(bottom). The green dot are experimental measurements. 
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Vibrational spectroscopy, including infrared (IR) and 
Raman spectroscopy, is a powerful tool for 
investigating molecular structure, bonding, and 
dynamics. However, accurately and efficiently 
predicting spectra remains challenging due to the 
complexity of vibrational interactions, anharmonic 
effects. Traditional computational methods, such as 
ones based on density functional theory (DFT), can 
offer accurate predictions but are often limited by 
their high computational cost, especially for large 
and complex systems[1]. Machine learning (ML) has 
emerged as a powerful alternative, enabling efficient 
and scalable spectra prediction[2]. In this work, we 
introduce an ML-based approach, which can 
accurately predict IR spectra and extends to 
systems subjected to external electric fields. 
Furthermore, we explore Raman spectra prediction 
under external electric fields, demonstrating the 
model’s ability to capture field-dependent vibrational 
responses. The developed approach offers a fast 
and accurate solution for vibrational spectra 
prediction, bridging the gap between efficiency and 
precision in vibrational spectroscopic simulations.  
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The primary barrier to widespread adoption of 
AI-accelerated materials science is the availability 
and quality of data. Researchers lack frictionless 
tooling and have limited incentive to record their data 
in such a way that is immediately amenable for 
machine learning, whether by them or by others. 
This talk introduces two data projects in the 
materials space that aim to lower the barrier to data 
access and curation by both humans and machines: 
the OPTIMADE federation of materials databases, 
and the open-source datalab materials data 
management platform. 
 
​ OPTIMADE consists of an international 
consortium of databases that have designed, over 
many years, a common application programming 
interface (API) format [1], which now allows for 30+ 
databases across 20+ providers to be seamlessly 
queried. Such federated data unification enables 
decentralized data-driven workflows in materials 
informatics and beyond, from materials selection up 
to materials discovery [2]. OPTIMADE is supported 
by several community-oriented tools that allow 
others to easily contribute their data to this growing 
ecosystem. This talk will introduce the OPTIMADE 
ecosystem, discuss the process of 
consensus-forming amongst providers, and outline 
how OPTIMADE could be extended to other 
domains. 
  
​ The second project primarily concerns 
experimental data; datalab [3] is a open-source data 
management platform that can be customized and 
adopted by materials research groups to allow for 
straightforward provenance tracking of samples, 
devices and raw data. It integrates with the broad 
open-source community of file format parsers (from 
the datatractor initiative and other popular packages) 
to allow for data normalization and simple analysis in 
the browser for many characterisation techniques 
(XRD, NMR, Raman, electrochemistry, etc). This 
platform provides the traditional benefits of having a 
digital system of record (e.g., an electronic lab 
notebook), whilst also enabling programmatic re-use 
of data across a research group via its API, with the 
aim to allow end user programming. By providing 
labs with control over their data platform, they can 
develop their own AI-driven developments, as well 
as selectively sharing and collaborating with others 
on shared workflows and samples. This talk will 
summarize the ongoing developments of datalab, 

including the integration of AI-based agents, and 
motivate future use cases of a federation of such 
datalab deployments. 
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Figure 1. A network of interconnected experimental 
samples, devices and measurements captured using 
datalab. 
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The use of advanced, including in situ and operando, 
core-level spectroscopy techniques has enabled 
detailed characterization of materials during 
synthesis and operations. Data-driven approaches, 
especially guided by computational spectroscopy, 
enable robust and accelerated information extraction 
from such spectroscopy data. In this talk, we discuss 
the featurization of x-ray absorption near edge 
structure (XANES) for extraction of local structure and 
electronic properties in battery cathode materials [1], 
and the extension thereof towards the detection of 
antisite defect and oxygen vacancy from multimodal 
EELS/XANES [2]. We also discuss the use of data-
driven approaches to accelerate the acquisition [2] 
and analysis [3] of XANES mapping data. Finally, we 
discuss the use of AI to extract relevant labeled 
microscopy and spectroscopy data from scientific 
literature [4], and recent extensions involving the use 
of large language models and multi-model contrastive 
learning. 
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X-ray photoelectron spectroscopy (XPS) is a 
powerful tool for studying the electronic structure 
and chemical composition of solid surfaces. 
Quantitative analysis of XP spectra typically relies on 
manual curve fitting by expert spectroscopists. 
However, recent advancements in the ease of use 
and reliability of XPS instruments have led to a 
growing number of (novice) users generating large 
datasets that are becoming difficult to analyze 
manually. Additionally, the expansion of publicly 
available XPS databases further increases the 
volume of data requiring efficient analysis. Reflecting 
these developments, more automated techniques 
are desirable to assist users in processing large XPS 
datasets. 
 
Here we present a scalable framework for 
automated XPS quantification using convolutional 
neural networks (CNNs). By training CNN models on 
artificially generated XP spectra with known 
quantifications (i.e., for each spectrum, the 
concentration of each chemical species is known), it 
is possible to obtain models for auto-quantification of 
transition metal XP spectra [1]. CNNs are shown to 
be capable of quantitatively determining the 
presence of metallic and oxide phases, achieving 
accuracy comparable to or exceeding that of 
conventional data analysis methods. The models are 
flexible enough to handle spectra containing multiple 
chemical elements and acquired under varying 
experimental conditions. The use of Bayesian CNNs 
and dropout variational inference for the 
determination of quantification uncertainty is 
discussed. Finally, we demonstrate how these 
network models can be integrated into research data 
management systems, enabling real-time analysis of 
newly generated data. 
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Various methods of deep learning are able to 
represent probability distributions over complex 
spaces. However, only a fraction of them is tractable, 
i.e. able to provide accurate answers to arbitrary 
probabilistic questions that are formulated using 
conditioning or marginalization. For example, a 
model that was trained as generative cannot be 
easily used as regressive. Probabilistic circuits are 
one class of models that are tractable, i.e. they are 
trained only once and answer arbitrary questions in 
a single pass through the model.  
 
The aim of this talk is to introduce an extension of 
this framework that is capable of generating graphs 
representing molecules [1]. Due to inherent 
tractability, the same model can provide answers to 
many other tasks such as classification of the 
molecules, generation of molecules conditioned on 
their properties or subgraphs, selecting the most 
important part of the molecule, etc. 
 
This property makes the model distinct from other 
deep generative models (DGMs) that have recently 
demonstrated remarkable success in capturing 
complex probability distribution over graphs [2]. 
Their excellent performance is attributed to powerful 
and scalable deep neural networks, it is, at the same 
time, exactly the presence of these highly non-linear 
transformations that makes DGMs intractable. That 
means that tasks for which the model was not 
trained can be answered only after retraining, 
sampling or other types of potentially expensive 
postprocessing.  
 
We propose probabilistic graph circuits (PGCs), a 
framework of tractable DGMs that provide exact and 
efficient probabilistic inference over (arbitrary parts 
of) graphs. Nonetheless, achieving both exact and 
efficient inference is challenging for the following 
reasons: 
C1. Graphs live in large and complex combinatorial 

spaces. Indeed, estimated numbers of possible 
graphs in the molecular domain are enormous. 
This poses considerable requirements on the 
expressivity of DGMs. 

C2. Graphs are not random only in values of node 
and edge features but also in the number of 
these nodes and edges. Therefore, specific 
architectures accounting for this variable-size 
character of graphs are required. 

C3. Graphs are permutation invariant, i.e., there is a 
factorial number of possible configurations of a 
single graph. The key property of graph DGMs 
should be to recognize all the configurations as 
the same graph. 

C4. Graphs respect domain-specific semantic 
validity. For example, not all molecular graphs 
are chemically valid but must adhere to chemical 
valency constraints. 

 
In this talk, we will outline the principles of solution of 
these challenges such as marginalization padding 
(C2) and canonical graph ordering (C3). However, 
the main focus will be on demonstration of the model 
capabilities of tractable inference. Specifically, we 
will demonstrate generation of novel molecules that 
are consistent with trainig datasets QM9 and 
ZINC250k for completely novel molecules or 
completion of molecules with predefined subgraph, 
Figure 1. 
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Figure 1. Generated samples from a model trained on 
QM9 dataset for a given part of the graph. The given part 
is highlighted by yellow color.   
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We present the OptiMate family of state-of-the-art 
Graph Attention Networks [1], capable of predicting 
the optical spectra of crystalline materials directly 
from their crystal structure in a matter of 
milliseconds. 
 
Optical properties in the visible and UV region are 
crucial for many technologically relevant 
applications, such as photovoltaics, optoelectronics, 
etc. In recent years, large databases of crystal 
structures have become available [1, 2], which are 
available to be scanned for various functional 
properties with the intent of discovering promising 
new materials for diverse applications. 
 
However, compared to many other properties, the 
optical properties of materials are extremely costly to 
calculate using ab-initio methods, and screening 
large databases using them is out of the question. 
Machine Learning (ML) therefore is a promising 
alternative.  
 
The high computational cost also complicates 
machine learning efforts, as all major materials 
databases, like the Materials Project [1] or the 
Alexandria database [2], lack high-quality optical 
data. Apart from the limited training data available, 
optical properties also pose additional challenges 
from the machine-learning perspective, being 
inherently frequency-dependent (i.e., high-
dimensional) and tensorial in nature. 
 
We have developed in-house ab-initio workflows to 
efficiently calculate the optical properties of 
crystalline solids in the UV-VIS spectral range at 
various levels of theory, going from PBE-IPA [3] to 
QSGŴ-BSE [4]. Based on the thus generated data, 
we have trained state-of-the-art Graph Attention 
Networks which can predict the optical properties in 
a wide frequency range.  
 
In this talk, we will present this so-called OptiMate 
family of models [3-5]. The spectra generated by the 
models are quantitatively accurate (see Fig. 1) and 
show a surprising amount of “physical insight”: 
Without explicit constraints in either the model 
architecture or the training process, the generated 
spectra are smooth, artifact-free and respect the 
Kramers-Kronig relation. In addition, even for 
challenging materials, where peak intensities are not 
incorrect, peak positions are often predicted well. 
 
Focusing on the OptiMate models for 
semiconductors and insulators, we will outline the 
model architecture and the training data, and show 
various performance metrics. In addition, we show 

results for transfer learning to higher levels of theory 
[5] and what kind of datasets we believe are 
necessary to reach experimental accuracy (see Fig. 
2).  
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Figure 1. Comparison between ab-initio calculated 

spectra (blue) and spectra predicted by OptiMate 
(orange). Materials are chosen from the test set based on 
the quantile of similarity between ab-initio and ML selected 
spectra as indicated on the right, i.e., the bottommost row 
are some of the worst performing materials.  
Image reproduced from [3]. 
 

 
Figure 3. Performance of transfer learning (orange) 

versus direct learning (green) on the test set when going 
from PBE-IPA to PBE-RPA, i.e., including local-field 
effects. In general, an order of magnitude less training 
data is necessary when transfer learning from a model 
pretrained on data from a lower theory level to achieve 
similar error metrics. Shown in blue are results for transfer 
learning only on small cells, with the maximum number of 
sites per unit cell indicated by the small number next to 
each data point. 
Image reproduced from [5]. 
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Recent advances in analytical electron microscopy 
allow the acquisition of hyperspectral images (HSI), 
with two spatial and one spectral dimension. In 
Scanning Transmission Electron Microscopy 
(STEM), a focused electron beam scans the sample, 
and for each position, a spectrum is recorded. This 
spectrum, obtained through Electron Energy Loss 
Spectroscopy (EELS), provides information on the 
material's composition and electronic structure by 
measuring how much energy the electrons lose 
when interacting with the sample [1]. 

Classical EELS data processing techniques can be 
applied to each spectrum individually. However, 
since the HSI dataset contains redundant 
information, it is more efficient to analyze it as a 
whole. Statistical methods such as Principal 
Component Analysis (PCA) are commonly used to 
reduce noise in HSI. But the ultimate goal of data 
processing is to transform the three-dimensional 
dataset (position × position × spectrum) into a set of 
two-dimensional maps, each associated with 
characteristic spectra representative of the sample's 
different components. 

A direct approach to obtaining these physically 
meaningful components and their spatial distribution 
is spectral unmixing. This technique assumes that 
each recorded spectrum can be expressed as a 
combination of a few characteristic spectra 
corresponding to the materials present in the 
sample. However, spectral unmixing is a challenging 
problem, and various methods have been developed 
in the hyperspectral imaging community to address it 
[2]. 

In this study, we assess the potential of neural 
networks, specifically Autoencoders (AE) (Fig. 1), for 
spectral unmixing. We generate synthetic HSI to 
quantitatively evaluate the accuracy of the unmixing 
process (Fig. 2) and then apply these methods to 
experimental data acquired from a Pt/Co/Ru/Pt 
multilayer. We initially tested relatively simple AE 
models, which produced interesting results but did 
not significantly outperform classical approaches [3]. 
To further improve performance, we explored more 
advanced architectures, incorporating Transformers, 
which leverage attention mechanisms to selectively 
focus on the most relevant spectral features. Unlike 
traditional neural networks, Transformers 
dynamically weigh the importance of different parts 

of the input data, enabling more effective spectral 
unmixing. This choice was motivated by the rapid 

progress in the field, as new models are introduced 

almost every month, pushing the boundaries of 

hyperspectral data analysis. Our results show that 
AE-based methods hold promise for STEM-EELS 
spectral unmixing and highlight the potential of deep 
learning techniques for extracting meaningful 
physical information from complex spectral datasets. 
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Figure 1. Architecture of an Autoencoder for spectral 

unmixing. The model is trained on all spectra in the HSI. 
The activations of the last hidden layer represent the 
abundances, while the decoder weights correspond to the 
endmembers. (Adapted from [4]) 

 

 
Figure 2. Comparison of unmixing algorithm performance 

for endmember extraction. Neural network-based methods 
are shown in orange, while traditional methods are in 
green. The evaluation metric used is the Spectral Angle 

Distance (SAD). 
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The GW approximation is a widely used method for 
computing quasiparticle energies of crystalline as 
well as molecular systems, providing accurate 
predictions of ionization potentials and electron 
affinities with higher accuracy than DFT while being 
more efficient than wavefunction methods. However, 
its practical applicability is often limited by the slow 
convergence of computed energies with respect to 
the basis set size. In this talk, I demonstrate that a 
recently proposed and simple complete basis set 
(CBS) limit extrapolation method [1] can be 
generalized to quasiparticle self-consistent GW 
(qsGW) calculations. Further, I demonstrate that 
commonly used basis set extrapolation methods 
underestimate the CBS limit of GW. Finally, and 
based on that extrapolation scheme I showcase a 
large dataset of highly accurate qsGW quasi-particle 
energies and GW-BSE excitation energies for 
Machine Learning and benchmarking purposes. 
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Figure 1. Fast and Simple qsGW 
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The electron microscope is not just a powerful tool 
for the imaging of materials at resolutions routinely 
reaching the atomic scale, it is a versatile 
characterization tool providing structural and 
chemical information through imaging, diffraction 
and spectroscopy. The two main spectroscopic 
techniques in the transmission electron microscope 
(TEM) are electron energy loss spectroscopy 
(EELS) and energy-dispersive X-ray spectroscopy 
(EDX).  
 
EELS provides insight into a broad range of physical 
properties through inelastic scattering events in the 
meV range (phonon, exciton), the eV range 
(plasmon) and the 100 eV-keV range (core electron 
transitions), with nanoscale spatial resolution. The 
most common way of performing EELS and EDX is 
in the scanning TEM mode (STEM) where an 
ångström-sized probe is scanned over the 
specimen, providing large and information-rich 
hyperspectral images. In this work, we will focus on 
core-loss EELS, which provides for example 
chemical information like oxidation state and 
bonding. EXD provides related chemical information, 
and we demonstrate how coincidence detection of 
EELS and EDX can improve the information retrieval 
[1]. 
 
For over two decades, model-based quantification 
using the maximum likelihood method for the 
estimation of physical parameters describing an 
EELS spectrum has been the golden standard [2]. 
Recently, the parametric model has been refined 
further [3,4] and an open-source python project has 
been released compiling the state-of-the-art model-
based quantification methods [5]. 
 
Inversion of the established parametric models for 
core-loss spectra provides an ideal simulation 
approach for large amounts of synthetic EELS data, 
proven to accurately represent experimental data, 
that can be used to train deep learning models such 
as neural networks. These neural networks can fill 
the gaps in processing workflows where model-
based methods do not provide the answer, in this 
case automatic identification of chemical content [6]. 
By applying the output of the deep learning model as 
input to the model-based approach, we can form 
entirely unsupervised quantification workflows which 
are urgently needed to cope with the ever-increasing 
amounts of data generated in modern STEM-EELS 
experiments. At the same time, they offer the 

potential to remove the dependency on tuning 
parameters that inevitably lead to experimenters’ 
bias and reproducibility issues that can plague EELS 
quantification methods. 
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Figure 1. Example of an unsupervised quantification 

workflow of a STEM-EELS dataset using neural network 
element identification as input for model-based 
quantification. 
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Recently, the time resolution of some experimental 
techniques has improved to the point where non-
equilibrium microscopic processes can be observed. 
These new instruments are particularly interesting 
for studying materials and their surfaces. Time-
resolved X-ray photoelectron diffraction (TR-PED) is 
one of the emerging fields among these. It is 
capable of giving access to chemically resolved local 
geometric properties with a high sensitivity to the 
extreme surface conditions (adsorption site of a 
molecule, its orientation, relaxation of the surface 
lattice parameter etc.). [1,2] 
However, experimental results need to be compared 
with a theoretical model in order to obtain maximum 
information and accuracy using a complex numerical 
simulation of the multiple scattering process at work. 
[3] 
 
Our work focuses on the study of TR-PED at finite 
temperature using molecular dynamics (MD) 
simulation for getting the positions of the atoms of 
the system with time. These temperature- 
dependent atomic motions are used to compute 
photoelectron diffraction patterns within the multiple 
scattering approach. Once integrated in time, the 
simulations give a more accurate picture of the 
temperature effect on the shape of photo diffraction 
peaks, and allow us to compare these results with a 
non time-resolved calculation in which temperature 
is modelled by statistically adding decoherence to 
photoelectrons. 
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Volatile Organic Compounds (VOCs) are 
characterized by a low boiling point, and they easily 
evaporate in air. They can be emitted from different 
sources, both natural and anthropic, contributing to 

air pollution with dangerous effects on the 
environment and on human health [1]. Machine 
learning is increasingly used for the analysis of 
spectral data [2], suggesting that it might be suitable 
for the identification of VOCs.  

 
The first part of this work focuses on the realization 
of a deep learning model for the classification and 
the quantitative analysis of VOCs' absorption 

spectra. We generate the training datasets with a 
multipass gas cell in a Vertex 70v Michelson 
interferometer, measuring low-concentration VOCs 
[3]. 
For each spectrum, the dataset provides the 

molecular identity, and the concentration of such 
VOC measured in ppm. The dataset is composed of 

970 spectra divided in acetone, benzene, ethanol, 
isopropanol, m-xylene, o-xylene, p-xylene, styrene, 

and toluene. 
The training phase of a deep neural network 
requires a sufficiently large dataset of examples, 
which is not always available in this context. For this 
reason, the second part of this work investigates the 

creation of synthetic data using a conditional 
variational autoencoder (cVAE) [4]. The decoder of 
the cVAE is used to generate synthetic data similar 
to the experimental spectra. This model extends the 

generation of new spectra to conditions not present 
in the original dataset (Fig. 1), e.g., to different 
concentrations. 
This work is divided into three steps: 

i) Training of the master model on the original 

experimental dataset to predict molecular identity 

and concentration; 

ii) Training of the cVAE conditioned on the 

molecular identity and the concentration of the VOC; 

iii) Training of the slave model on a dataset 

augmented with synthetic spectra. 

The master and slave models use the same 

architecture: the model is a deep convolutional 
neural network, with a sequence of convolutional 
layers and two heads: a classifier-head recognising 

the molecular identity, and a multi-regression-head 
predicting the concentration of the VOC. 
 
In each epoch of the slave models’ training, the 

trained conditional decoder is used to generate the 
synthetic data, with randomly sampled 
concentrations. These synthetic data are then added 
to the original training dataset. 
The amount of added data is changed to train 
different slave models, and the performance of the 

model associated with the minimum mean square 
error is reported in Fig. 2. 
The use of cVAE to generate synthetic data not only 

allows augmentation to train new models but also 
permits to generate new spectra with concentrations 
not present in the original training dataset. 
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Figure 1. Examples of generated (red, and yellow lines), 

and original experimental spectra (blue lines) of 

Isopropanol. Red lines indicate spectra with 

concentrations available in the dataset, the yellow lines 

refer to concentrations not present in the dataset. 
 

 

Figure 2. Comparison of performance of master and slave 

models divided per class on test set. 
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Biofuels derived from biomass are a viable and 
sustainable alternative to fossil fuels, but their large-
scale implementation is hampered by high 
production costs [1]. The optimization of 
(photo)bioreactors for biofuel production relies on 
the precise characterization of algal biomass, 
particularly its organic constituents [2]. RAMAN 
spectroscopy is a highly effective technique for this 
analysis [3]. However, fully characterizing these 
compounds in biomass is challenging due to the 
vast number of possible conformers and isomers 
(>10⁴) present in the mixture. A key challenge lies 
thus in differentiating the spectral contributions of 
individual compounds and accurately identifying 
their conformers within complex mixtures [2].  
 
At present, we treat the case of (a, b, g)-carotenoids 
as a case study. First, an experimental investigation 
was carried out to study these compounds in a 
culture of Chlamydomonas reinhardtii microalgae. 
Specifically, a micro-Raman spectroscopy analysis 
was carried out using a Horiba X-plora confocal 
microscopy Raman spectroscopy system, equipped 
with 10× and 50× long-working-distance objectives 
and a charge-coupled device (CCD) detector (see 
Figure 1). The Raman excitation source is provided 
by a 638 nm LED laser beam, with a beam power of 
6 mW, focused on the sample with a spot size of 
approximately 1 μm in diameter at 532 nm.  
 
The next step was to conduct a theoretical study 
combining first-principles techniques with various 
statistical tools to clarify the contributions of the 
different molecular species and relative conformers 
to the measured spectra. First, we predict the 
structure of the various conformers using the GFN-
FF method [4,5,6]. Then, we compute their RAMAN 
spectra using the Density Functional Theory (DFT). 
A subsequent Machine Learning (Linear regression) 
coupled to clustering (k-Means) treatment allows to 
minimize the redundancy in the generated 
conformer dataset. Afterwards, by combining the 
Spectral Angle Mapper (SAM) analysis and Principal 
Component Analysis (PCA), we were able to 
successfully identify the spectral contribution and 
key regions for these conformers (see Figure 1). In 

fact, the comparison of the computed RAMAN 
spectra to that of microalgae (Chlamydomonas 
reinhardtii) allowed the identification of the few (a, b, 
g)-carotenoids conformers present in such biological 
media. 
 
In conclusion, our approach offers a viable 
framework for the rapid analysis of the contribution 
of individual conformers of (α, β and γ)-carotenoids 
and more generally of precursors in algal biomass. 
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Figure 1. A) cluster of α-carotenoid conformers generated 
by the GFN-FF method. B) overlay of the generated 
RAMAN spectra of the theoretically calculated α-
carotenoid conformers, and the experimental RAMAN 
spectra of Chlamydomonas reinhardtii microalgae. C) 
SAM analysis of the RAMAN spectra obtained by DFT of 
the theoretically generated α-carotenoid conformers. D) 
PCA of all generated RAMAN spectra of the theoretically 
calculated α-carotenoid conformers, and the experimental 
RAMAN spectra of Chlamydomonas reinhardtii 
microalgae. 
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The dielectric functions of metals provide critical 
insight into plasmonic, photonic, and electronic 
phenomena. However, no comprehensive dataset 
exists for these properties, in part due to the 
computational challenge of converging the dielectric 
function with respect to Brillouin zone sampling, 
particularly the Drude tail. Here, we address this gap 
by performing high-throughput ab initio calculations 
on 200,000 intermetallic compounds from the 
Alexandria database [1]. These results represent the 
presumably first and largest dataset of metal-
dielectric functions assembled to date. 
 
Central to our approach is the Prandini et al. [2] 
SIMPLE code, which implements the optimal basis 
method originally proposed by E. L. Shirley [3], 
allowing us to easily interpolate k-point grids. This 
method allowed reliable convergence of the 
dielectric function and the Drude tail, facilitated by 
our in-house high-throughput workflow. To verify the 
accuracy of our data, we compared calculated 
dielectric spectra for simple metals with 
experimental measurements. The agreement is 
already quite good, which highlights the robust 
nature of our workflow, see for example Figure 1. 
Nevertheless, our results confirm a well-known 
limitation of density functional theory in predicting 
the position of d-bands and their associated 
absorption peaks, as is the case for elemental Cu, 
Ag, and Au. 
 
We present first results on learning the dielectric 
function from our newly generated dataset. In doing 
so, we face several challenges: the handling of the 
Drude tail in machine learning models, in particular 
its divergence in the static limit, and the accurate 
joint prediction of real and imaginary parts. Finally, 
we outline prospects for transferring a model to 
quasiparticle self-consistent GW (QSGW) 
calculations performed in QUESTAAL [4], where the 
d-band position is significantly improved, as 
illustrated for Au in Figure 2. 
 
Our work paves the way for rapid and reliable 
prediction of dielectric properties in a wide range of 
metallic systems, likely enabling and supporting 
future discoveries in plasmonics, photonics, and 
materials design. 
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Figure 1. Comparison of the imaginary (solid lines) and 

real (dashed lines) parts of the dielectric function of Ta 
obtained from experiment (black) [5] and our ab initio 
workflow (orange). 
 

 

 
Figure 2. Comparison of the imaginary (solid lines) and 

real (dashed lines) parts of the dielectric function of Au 
obtained from experiment (black) [6] and advanced ab 
initio calculation. In particular, we compare all-electron 
LDA (orange, similar to PBE) with all-electron QSGW 
calculations (blue) performed in QUESTAAL [4]. 
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Abstract 
 

Modern Artificial Intelligence (AI) methods 
offer the potential to revolutionize the prediction of 
material properties and the optimization of 
processes. However, creating robust AI models 
requires access to large standardized databases 
[1,2], which are not only rare but also difficult to 
combine due to licensing restrictions and 
confidentiality concerns. Available data is often 
unstandardized and poorly labeled, making it 
challenging to use effectively. 

Within the AID4GREENEST project [3], we 
develop self-supervised methods to automatically 
sort and curate large scanning electron microscopy 
datasets of steels, organizing them into a structured 
microstructural space [4]. Analyzing this space 
allows us to identify imperfections and imbalances 
within datasets. We further demonstrate synthetic 
data techniques that interpolate within this space to 
generate additional image data, helping models 
better account for expected variations in real data. 
These approaches lay the groundwork for improved 
AI-driven materials characterization and, in the 
future, can support optimal data production through 
CHADA documentation [5]. 

.  
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Figure 1. Mapping the microstructure space: Each point 

represents a single micrograph. On the right, a zoomed-in 
micrograph is shown; can you determine if it is real or 
synthetic? 
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The light management in nitride materials is directly 
related to the growth and technology process 
controls, but the development of advanced 
characterization techniques with high spatial 
resolutions also plays a major role. Noticeably, 
focused X-ray beams provide an efficient probe to 
analyse quantitatively and correlatively the strain 
and light emission by combining µLaue diffraction 
(µLaue) and X-ray excited optical luminescence 
(XEOL), the two signals being recorded for the same 
time during mappings. This work will illustrate some 
recent experimental and analysis breakthroughs 
obtained at the BM32 beamline of the European 
Synchrotron Radiation Facility. A focus will be done 
on the XEOL analysis and illustrated with mappings 
of nitride materials in terms of structural analysis 
(epitaxial relationships, strain, orientation) and light 
emission. The hyperspectral analysis by Non-
negative Matrix Factorization (NMF) can be used to 
decompose the light emission in components of 
signals coming from the different parts of the sample 
and with real physical interpretations. It can be 
compared to other techniques, e.g., 
cathodoluminescence with electron probes and 
photoluminescence with laser light excitation. 

The light emission of GaN µwires [1-3] and µLEDs 
obtained by etching GaN/InGaN Multiple Quantum 
Well (MQW) of commercial MOVPE UV 
heterostructures are studied by XEOL hyperspectral 
analysis, and the local strain variation and lattice 
rotation is obtained from µLaue analysis. A complete 
mapping (e.g., 40000 spectra of 1024 channels) of 

µLED takes benefits from the small beam size ( 

250 nm), short counting time (1 s) and from the 
polychromatic diffraction Laue pattern method that 
can record many Bragg reflections without rocking 
the sample.  

The XEOL data are analysed in detail with the AI-
related method of Non-negative Matrix Factorization. 
The definition of the number of components, the use 
of GPU, the number of trials to find the solution, as 
well as the count statistics to describe the counting 
will be discussed [4]. It is shown that the three main 
emissions of the samples (MQW, near band edge 
peaks and defects band) can be directly retrieved in 
a fast and “ab initio” way with the NMF method.  

The results of the combination of both methods 
enable the correlation of the visible emission and the 
crystalline structure of the materials, and therefore to 
improve manufacturing techniques. It will be also 
demonstrated that fast scans allow for obtaining a 

statistical description of the samples opening the 
way to production control and a fast and systematic 
screening of optoelectronic materials and 
microstructures. New potential applications for 
different MOVPE materials will be given in this 
communication. 
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Figure 1. Left: XEOL/µLaue measurement schematics. 

SEM-view of µLED samples and schematics. Right: XEOL 
hyperspectral mappings of the µLEDs showing the 
panchromatic spectrum and image, and the individual 
mappings of near-band edge, blue and defect-band 
emission. 

 
Figure 2. Finding two low-rank non-negative matrices   ∈ 

ℝ
( × )

 and   ∈ ℝ
( × )

 whose product can well approximate 

the matrix  , (  =     ),   is called the basis matrix,   

the encoding or mixture coefficient matrix, K 
decomposition rank. Top: decomposition with 4 
components. Bottom: the 4 mixture coefficients mappings 
for the different physical signals. Residual at the bottom 
right. 
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Aerosols, which are nano- to microscale particles 
suspended in the air, have a significant influence on 
climate, weather, health, and ecology. The size and 
composition of aerosol particles determine their 
interactions with atmospheric compounds. Among 
these, Sodium Chloride (NaCl) is the most abundant 
aerosol particle. Surface-sensitive Ambient Pressure 
X-ray Photoelectron Spectroscopy (APXPS) has 
revealed that NaCl aerosol particles undergo 
structural transformations depending on atmospheric 
humidity levels [1]. However, understanding the 
surface atomic arrangement that governs the 
interaction of NaCl aerosols with the atmosphere 
under humid conditions remains an ongoing 
challenge.  

To address this challenge, we employ Bayesian 
Optimization Structure Search (BOSS) [2] code 
combined with DFT to model the adsorption 
geometry of atmospheric water on the NaCl aerosol 
surface. BOSS code samples various configurations 
of atmospheric water on aerosol surfaces, enabling 
the learning of adsorption energy landscapes. Once 
the adsorption geometry is optimized, we apply the 
Δ self-consistent field (ΔSCF) [3] approach to 
compute the core electron binding energy of the Na 
1s electron in NaCl aerosol particles. By comparing 
the Na 1s binding energy before and after 
atmospheric water adsorption, we can interpret 
changes in experimental XPS spectra under humid 
conditions.  

This study leverages ML-driven DFT to reveal 
atomic-scale interactions between aerosols and 
atmospheric water, providing insights into APXPS 
data. Additionally, it serves as a framework for 
exploring interactions between aerosols and more 
complex atmospheric compounds. 
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Figure 1. A schematic of the workflow used in this work. 
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Angle-resolved photoemission spectroscopy 
(ARPES) gives access to the non-interacting 
dispersion and the electron self-energy       for 

electron energy   through the electron spectral 

function [1]. According to Matthiessen's rule,       
combines the interaction of electrons with phonons 

(  
     ), impurities (  

      ), and other electrons 

(  
     ) [2]. After this decomposition, the maximum-

entropy method (MEM) [3] can be used to extract 

from   
      the Eliashberg function         [4], 

which quantifies the magnitude of electron-phonon 
coupling for given phonon frequencies ω. However, 

quantification of the parameters describing   
     , 

  
      , and the non-interacting dispersion is 

obstructed by the energy resolution, and has so far 
relied on a time-consuming visual inspection of the 
fit quality [5]. We obtain a probabilistic description for 
these parameters by extending the MEM with 
Bayesian inference, resulting in an automated and 
objective quantification, and we release it as the 
xARPES code (https://xarpes.github.io). We apply 
our approach to two high-quality band maps, finding 
signatures of longitudinal-optical phonons in the 2-
dimensional electron liquid on the surface of TiO₂-
terminated SrTiO₃ as well as rich and reproducible 
features in two separately extracted Eliashberg 
functions in Li-doped graphene. Finally, we outline a 
fitting approach that accounts for the energy 
resolution through bypassing the self-energy 
extraction step. 
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Figure 1. Flow chart for the quantification of many-body 

properties for an ARPES band map acquired with angle-
resolved photoemission spectroscopy. After the Fermi-
edge and momentum-distribution-curve fits, Bayesian 
inference is used in the optimization loop to quantify all of 
the involved model parameters. 
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Abstract 
 
A Weyl semimetal is a new matter state possessing 
Weyl fermions near the Fermi level with several 
unique physical properties and it is confirmed by the 
existence of Fermi arc surface states [1]. In this work 
we study tantalum arsenide (TaAs) which is a 
prototypical Weyl semimetal compound. The 
electronic structure properties have been studied by 
soft and hard X-ray angle-resolved photoemission 
spectroscopy (ARPES) at energies of 440 eV and 
2150 eV, respectively. For the first time, TaAs is 
experimentally investigated by the bulk sensitive 
photoemission in the hard X ray regime. In order to 
interpret experimental data we performed one-step 
model of photoemission calculations which include 
[2-4] all matrix elements and final state effects. Due 
to the strong photon momentum effects and 
uncertainty in the tilt of experimental geometry we 
used a so-called machine learning algorithm 
combined with a free-electron final state model to 
find best possible experimental parameters. Our 
findings re-emphasize the overwhelming accuracy of 
hard X-ray ARPES (HARPES) compared to the 
traditional ultraviolet and soft X-ray one in case of 
bulk electronic structure, motivating further material 
discoveries. 
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The k-space resolution in angle-resolved 
photoemission spectroscopy (ARPES) relies on the 
conservation of the full three-dimensional (3D) 
electron momentum k during the photoexcitation 
event. During the photoelectron’s escape to vacuum 
only the in-plane momentum k// is conserved, 

however, whereas the out-of-plane one k is 
distorted as the photoelectron crosses the surface. 

The original k can only be recovered if the out-of-

plane dispersion E(k) of the ARPES final states 
back in the bulk is known. Furthermore, the finite 
mean free path of photoelectrons results in intrinsic 

broadening of their k that can shift ARPES peaks 
from their positions dictated by strict momentum 
conservation. 
 

There are two common approaches to describe the 
ARPES final states. The simplest approach is to 
approximate them by free-electron-like dispersions. 
Although this approach may reasonably describe 
overall behavior of the ARPES spectra, finer details 
indicate deviations of the final states from the free-
electron-like model. The second approach uses the 
theoretical bandstructure of the final states, 
described as scattering states [1,2]. However, this 
approach typically produces a dense multitude of 
bands, whose connection to the ARPES spectra is 
obscure, especially at high excitation energies [3,4]. 
 

Within one-step theory, the photoemission final 
states are time-reversed LEED states. At excitation 
energies below ~50 eV typical of VUV-range 
ARPES, this connection enables direct access to the 
final states using Very-Low-Energy Electron 
Diffraction (VLEED). Specifically, the energies of the 
VLEED spectral structures reflect critical points in 

the final-state E(k) (such as those situated at the 
symmetry lines of the Brillouin zone) while their 
energy broadening reflects the corresponding 
lifetimes [3,4]. The VLEED data analysis should 
engage reference calculations of the final-state 
bandstructure to identify, in a multitude of all bands 
available for given photoelectron energy and k//, the 
few that effectively couple to the outgoing 
photoelectron plane wave in vacuum and thereby 
effective in the photoemission process. 
 

Extensive VLEED experimental data show that 
complexity of the final states can go far beyond the 
naive free-electron-like picture. Not only can these 
states deviate dramatically from parabolic 
dispersions, but they can also exhibit a multiband 
composition where the final state for given 
photoelectron energy and k// includes several Bloch 

waves with different k values. Such phenomena 

have been identified for a wide range of materials, 
from metals (Cu, Ni, Ag) to van-der-Waals materials 
(graphite, VSe2, TiS2, TiTe2, Bi2212, etc) [6]. 
Another key finding is that self-energy can vary in a 
highly non-trivial way as a function of k and the 
orbital composition of the final-states [5]. VLEED-
derived final states with controlled intrinsic k⊥ 
broadening enable reliable determination of 3D 
bandstructures from ARPES data for materials with 
complex non-free-electron final states. 
 

At high excitation energies in the soft- and hard-X-
ray range, the photoelectron energy far exceeds the 
crystal potential modulations. One might expect that 
the final states there become truly free-electron-like. 
Surprisingly, recent soft-X-ray ARPES experiments 
in the energy range around 1 keV [4] have revealed 
distinct multiband final states in GaN and even in 
Ag, where the crystal potential is well screened (Fig. 
1). Similar effects have also been observed in van-
der-Waals materials and even in Al, the classical 
free-electron metal. Qualitatively, these effects can 
be understood through the momentum-transfer 
dependence of the crystal pseudopotential [4]. A key 
benefit of high-energy ARPES in exploring 3D 
bandstructures is the sharp intrinsic k⊥ broadening 
due to the increasing photoelectron mean free path. 
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Figure 1. Normal-emission ARPES data from Ag(100), 

theoretical with free-electron-like final states (left) and 
experimental (right). Splitting and broadening of the 
ARPES dispersions (most clear in EF-MDC) manifests 
multiband final states. 
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X-ray absorption spectroscopy provides a wealth of 
information regarding the local structure and 
electronic properties of materials. However, data 
analysis is significantly more time-consuming than 
acquisition and initial data reduction. Decoding the 
information relies on comparing it with similar 
compounds for which the spectrum–property 
mapping is already established, a task that is very 
often performed by visual inspection. 
 
Machine learning (ML) is revolutionizing many fields 
with its ability to extract and learn patterns in big 
data without providing additional prior information 
other than the data itself. ML models give access to 
instantaneous predictions of properties and 
observables, which makes them particularly 
attractive for performing real-time analysis of the 
measured data or autonomous experimental 
acquisitions. Therefore, ML has quickly become an 
important tool for analyzing X-ray spectroscopy data, 
speeding up and improving the accuracy with which 
materials’ structural parameters are obtained

1,2
.    

 
In this contribution, we present the application of the 
random forests algorithm and convolutional neural 
networks to identify the coordination environment of 
iron in a given compound from the corresponding K-
edge X-ray absorption spectrum. Since we train our 
models on theoretical data and then use them to 
infer properties from measured spectra, we carefully 
quantify various error sources that can limit 
prediction quality. These include spectral shift, 
normalization issues, overabsorption, and the level 
of Poisson noise. In addition, we present the use of 
oversampling techniques to tackle class imbalance, 
a common issue in such datasets, as most materials 
in nature tend to adopt a small set of specific 
coordination environments. Finally, we will 
showcase the implementation of the models for the 
online analysis acquired at the ID26 beamline of 
ESRF. 
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Abstract : 
 
This study explores the origins of spin polarization in 
semi-infinite Au(111), examining 
whether the observed spin polarization arises 
primarily from the system’s initial states or 
solely through the Photoemission process. To 
address this, we will integrate both 
experimental and theoretical results to provide an 
understanding of this spin-polarization 
origins, we calculate the electronic band structure 
with and without the influence of Mott- 
Scattering, while isolating additional factors, such as 
the Rashba effect[1]. On the theoretical 
side the calculations are performed using the 
SPRKKR method [2,3] which is based on DFT 
calculations, which will account for fundamental 
effects, while the additional one-step 
model will account for the photoemission process.  
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Figure 1. Rashba splitting in the Au(111) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Application of machine learning 
for calculating Raman spectra 
of layered two dimensional 
materials 

 
Johannes Scheffler

1
, Dorothea Golze

1 

1
Technische Universität Dresden, 01062, Dresden, 

Germany 
 

johannes.scheffler@tu-dresden.de 

 
Raman spectroscopy is widely used for the 
characterization of layered two-dimensional 
materials (2DMs); however, interpreting 
experimental data without theoretical reference can 
be challenging. To address this, we employ a 
machine learning driven molecular dynamics 
(MLMD)-based approach to calculate Raman 
spectra. Compared to conventional normal mode 
analysis, MLMD offers the advantage that 
anharmonic effects, such as solvent interactions, 
can be included. In addition, low-frequency modes 
(< 100 cm

-1
) can be described, which can be used 

as indicators for the layer thickness and stacking 
order in 2DMs. To perform MLMD-based Raman 
calculations, we train the underlying ML model on 
relevant reference quantities, namely density 
functional theory (DFT) energies and forces, as well 
as density functional perturbation theory (DFPT) 
polarizabilities. 
 
In layered 2DM, layer-layer interactions are 
dominated by long-range van der Waals (vdW) 
forces. Accurately describing these interactions, as 
emphasized in Ref. [1], is essential for stable MD 
trajectories and must be accurately represented by 
both the selected vdW and the ML model. In our 
current work, we investigate two ML strategies for 
MLMD simulations of layered hexagonal boron 
nitride (hBN). First, we employ Gaussian 
Approximation Potentials (GAP) [2], which 
separately learn PBE energies, forces, and vdW 
model parameters. Second, we apply the equivariant 
message passing neural network 'PaiNN' [3] which 
directly learns total energies and forces. 
The preliminary results are promising; we find that 
both our GAP and PaiNN models successfully learn 
energies and forces for the hBN system, showing 
good agreement between peak positions in the 
MLMD-based power spectra and an ab initio MD-
based reference. 
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Real-time time-dependent density functional theory 
(RT-TDDFT) directly simulates the photoresponse 
observed in spectroscopy experiments, but for large 
molecules its computational cost restricts us to short 
simulation times which limits achievable spectral 
resolution. A recent superresolution method [1] 
addressed this limitation by augmenting RT-TDDFT 
dynamics with approximate results from linear 
response TDDFT. This hybrid approach reduced the 
required number of RT-TDDFT timesteps by up to a 
factor of 20 compared to standard Fourier analysis. 
However, this drastic improvement remains 
somewhat insufficient for hybrid DFT calculations of 
very large systems, such as nanosized quantum 
dots or plasmonic nanoparticles, which exhibit 
strong size-dependent optical properties, requiring 
RT-TDDFT with tens of thousands of electrons [2].  
 
To address this, we propose further enhancements 
to the superresolution methodology. These include: 
(1) incorporating higher-order response information 
beyond the dipole, (2) optimizing beam and signal 
parameters, (3) dynamically adjusting timesteps, (4) 
implementing noise reduction techniques and (5) 
integrating machine learning algorithms for spectral 
reconstruction. These advancements aim to 
drastically reduce the number of required RT-
TDDFT timesteps, enabling accurate and efficient 
spectral prediction for large molecules. Furthermore, 
we will also discuss broadening the scope of the 
existing framework to extract additional observables 
such as electronic couplings.  
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The interface between organic and inorganic 
materials plays a crucial role in many technologically 
relevant materials, where comprehensive 
understanding of the adsorption phenomena is 
essential. Core electron spectroscopy methods are 
powerful tools for probing the chemistry of these 
interfaces. However, it is challenging to deduce the 
interfacial structure from the resulting spectra. 
Computational methods, such as density functional 
theory calculations, can complement spectral data by 
searching for energetically favorable adsorption 
geometries to obtain atomic-scale insights. The 
Bayesian Optimization Structure Search (BOSS)[1] 
algorithm accelerates such computational studies by 
modeling the adsorption energy landscape in an 
active learning framework. Its performance can be 
further enhanced by exploiting the inherent 
symmetries of inorganic substrates and organic 
adsorbates. In this work, we take into account 
substrate and adsorbate symmetries to identify 
analogous adsorption configurations in each 
sampling iteration. Using the spglib[2] Python 
package, we detect crystalline surface symmetry to 
determine equivalent adsorbate positions and 
orientations. Additionally, the rotational symmetry of 
the adsorbate molecule—when present—is 
leveraged to identify further corresponding 
orientations. The symmetry-aware approach 
facilitated a more effective exploration of adsorption 
geometries by improving both the efficiency and 
accuracy of the search. Furthermore, the approach 
has the potential to be generalized towards any 
symmetry-rich structure search problem. 
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The remarkable structural and electronic diversity of
transition  metal  complexes  (TMCs)  poses  a
persistent challenge for accurate spectral prediction,
limiting the effectiveness of data-driven models.  The
XAS-3dtm  dataset  [1]  provides  K-edge  X-ray
absorption  spectra  for  first-row  TMCs  (Ti  -  Zn),
simulated  using  FDMNES  and  multiple  scattering
theory.  While  this  dataset  is  valuable  for  machine
learning, it lacks orbital-level information necessary
for  detailed  spectral  interpretation.  The  XAS-3dtm
dataset  complements  existing  comprehensive
datasets,  such as  tmQM. designed specifically  for
quantum  mechanical  modeling  of  transition  metal
complexes [2].

In  this  work,  we  aim  to  enrich  XAS-3dtm  by
incorporating orbital-resolved features obtained from
linear-response  time-dependent  density  functional
theory (TDDFT) calculations, as similarly done in our
previous work [3].  We are currently focusing on a
subset of Ni-containing complexes, for which TDDFT
spectra will serve as the basis for a transfer-learning
framework,  allowing  us  to  extend  the  dataset  by
orbital-level predictions. 

For  the  spectra  prediction  we  are  training  graph-
based neural networks including GCN, GATv2, and
Graph  SAGE  on  molecular  structure  data.
Preliminary,  results  show  that  model  performance
improves with more accurate graph representations
(e.g., including ligand identity, conjugation, topology)
This ongoing work aims to bridge the gap between
low-cost simulations and orbital-resolved models.
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Abstract 
 
Reducing greenhouse gas emissions, particularly 

CO₂, is critical, as it accounts for over 75% of the 
anthropogenic greenhouse effect¹. Among the 
various available mitigation strategies, capturing 
CO₂ from the atmosphere and converting it into 
value-added products (VAPs) is a promising 
approach. Microalgae outperform terrestrial plants in 

CO₂ bio-fixation by assimilating CO₂ under light 
exposure and converting it into algal biomass. This 
biomass is rich in lipids, sugars, proteins, and 
pigments

2
, making it a valuable resource for 

renewable bioenergy
3
 and other industries

4
. 

However, the high cost of biofuel production limits its 
competitiveness with fossil fuels

5
. Optimizing 

experimental conditions in photobioreactors in order 
to maximize lipid yield, requires a detailed 
characterization of algal biomass components. 
Infrared (IR) and Raman spectroscopies are 
effective in analyzing biofuel composition

6
, but a 

major challenge lies in identifying individual organic 
compounds within complex mixtures. This study 
focuses on fatty acids, key biofuel precursors, by 
employing a combined computational chemistry and 
machine learning approach.  
We generated conformers of octanoic acid, a 
representative fatty acid, using the state-of-the-art 
Conformer–Rotamer Ensemble Sampling Tool 
(CREST)

7
. These conformers were then represented 

using molecular descriptors (e.g., torsion angles, 
chain lengths) and clustered by geometry via 
machine learning techniques. Representative 
Raman spectra were computed for each cluster 
using quantum chemical methods, such as Density 
Functional Theory, DFT, and it will be compared with 
experimental data to identify conformers of this fatty 
acid present in algal biomass. This methodology will 
be applied to other biofuel-relevant fatty acids, 
including decanoic, dodecanoic, myristic, palmitic, 
and stearic acids. Similar strategy can be extended 
to other chemicals, paints, etc. The computational 
approach will help in optimizing the reaction 
conditions for experimental photobioreactors thus 
increasing the yield of biofuel. 
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Figure 1. Clustering of octanoic acid conformers (star 

represents the centre of cluster while cluster 
representative molecular structure is available at the 
bottom or right side of cluster) 
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X-ray Absorption Spectroscopy (XAS) is a powerful 
technique for probing the local atomic structure of 
materials. However, the analysis of XAS data often 
involves complex and time-consuming processing 
steps, especially during the extraction of the EXAFS 
signal from the raw data. EstraPy is a Python program 
designed to streamline this process by providing a 
highly adaptable and efficient platform for XAS data 
analysis. Unlike its predecessor, ESTRA[1], which is 
primarily tailored for EXAFS, EstraPy adopts a 
sequential, instruction-driven architecture, enabling 
users to execute a series of operations with precise 
control over each step. This flexibility allows for the 
analysis of diverse XAS datasets, including both 
XANES and EXAFS spectra in both fluorescence and 
transmission modes, read from standard ASCII 
tables. 
 
A key feature of EstraPy is its enhanced flexibility in 
data handling, with particular attention to preliminary 
data treatment procedures, including energy scale 
(𝐸0) finding algorithms, data alignment, abscissa (𝐸 or 
𝑘) binning and interpolation, glitches and spurious 
point removal. It has been designed to specifically 
treat large data files as those output from Q-XAFS 
set-up routinely providing up to thousands of data 
points. The program supports batch processing of 
multiple files, with options for spectral averaging or 
independent analysis, significantly improving 
throughput. 
 
The script/command-line interface, flexible 
architecture and high portability are characteristics 
making EstraPy a valuable tool for researchers 
seeking to optimize their XAS data analysis 
workflows. 
 
The current implementation focuses on direct 
sequential execution of instructions; the integration of 
scripting capabilities, multivariate analysis and 
machine learning algorithms for automated data 
processing and feature extraction are under 
development. Moreover, the functionality of FitEXA 
are being integrated into EstraPy, toward a one-step 
procedure from raw absorption data to EXAFS data 
refinements, analogous to Rietveld method[2] or 
Fitheo module[3] in GnXAS suite. 
 
EstraPy is accessible on GitHub at the following URL: 
https://github.com/ramsteak/EstraPy 
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Figure 1. Batch processing of XANES spectra during an 
oxygen treatment of palladium-doped zeolites. 

 
Figure 2. Batch processing of EXAFS spectra of palladium 
foil measurements 

 
Figure 3. Batch processing of EXAFS spectra of palladium 
foil measurements 
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The GW approximation is a widely used method for 
computing quasiparticle energies of crystalline as 
well as molecular systems, providing accurate 
predictions of ionization potentials and electron 
affinities with higher accuracy than DFT while being 
more efficient than wavefunction methods. However, 
its practical applicability is often limited by the slow 
convergence of computed energies with respect to 
the basis set size. In this talk, I demonstrate that a 
recently proposed and simple complete basis set 
(CBS) limit extrapolation method [1] can be 
generalized to quasiparticle self-consistent GW 
(qsGW) calculations. Further, I demonstrate that 
commonly used basis set extrapolation methods 
underestimate the CBS limit of GW. Finally, and 
based on that extrapolation scheme I showcase a 
large dataset of highly accurate qsGW quasi-particle 
energies and GW-BSE excitation energies for 
Machine Learning and benchmarking purposes. 
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Figure 1. Fast and Simple qsGW 
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Infrared spectroscopy is an important tool for 
understanding catalytic processes. By probing the 
vibrational properties of molecules, it offers detailed 
insights into molecular structure transformations 
during catalytic reactions. However, interpreting 
experimental spectra is challenging due to the strong 
influence of the species environment. Ab-initio 
molecular dynamics (AIMD), which goes beyond the 
harmonic approximation of the molecular potential 
energy surface, offers valuable support for this task 
by providing accurate theoretical spectra. But this 
approach is computationally intensive. 
 
Machine-learned interatomic potentials (MLIPs), such 
as MACE [1], offer a promising alternative to AIMD for 
simulating molecular systems. Once trained, MLIPs 
enable accurate and fast IR spectra predictions. 
However, MLIPs require extensive training data to 
achieve accurate spectra. 
 
To address this challenge, we have established an 
active learning (AL) [2] method PALIRS [3] (a Python-
based active learning code for infrared spectroscopy). 
In our preliminary work, PALIRS was applied to 
predict IR spectra of organic molecules comprising C, 
H, N, and O with carbon count of ≤ 2, which are 
essential in catalytic processes. PALIRS has 
demonstrated the ability to reduce the required data 
by a factor of 100 and offered highly accurate IR 
spectra, with peak positions matching experiment 
within 20 cm-1. 
 
In this work, PALIRS is extended on more complex 
organic molecules, comprising C, H, N, and O, with 
carbon count of ≤ 5. The key objective of the work is 
to compare two MLIP training strategies in AL, aiming 
to further improve the efficiency of PALIRS. The first 
approach is the conventional training from-scratch, 
where a new MLIP is generated from scratch at each 
AL iteration using the entire accumulated training 
data. The second strategy is the transfer learning, 
where at each AL iteration the MLIP is fine-tuned on 
new data acquired at the current AL iteration. 
 

Our results demonstrate that transfer learning 
maintains high final MLIP accuracy (< 11 meV for total 
energies and < 10 meV/Å for forces), while reducing 
total training time by a factor of ~8 (Fig. 1). This 
significant reduction in computational cost makes 
transfer learning a promising approach for MLIP 
training in AL. 
 
Building on this foundation, the updated PALIRS 
offers an even more efficient workflow for developing 
the MLIP capable of predicting IR spectra for a wide 
range of organic molecules. The approach will 
advance the field of catalysis by providing an efficient 
and accurate method for predicting and interpreting 
IR spectra, facilitating better understanding of 
catalytic processes and the design of better catalysts. 
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Figure 1. Comparison of Transfer Learning (TL) and From-
Scratch (FS) training strategies for MLIP in the AL. (a) Mean 
absolute error (MAE) of total energies (in meV) across AL 
iterations, evaluated on a separate test set generated using 
molecular dynamics simulations. (b) MAE of atomic forces 
(in meV/Å) at each AL iteration on the same test set. (c) 
MLIP training time (in hours) across AL iterations and 
cumulative training time on 8 AMD MI250X GPUs. 
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Biofuels derived from biomass are a viable and 
sustainable alternative to fossil fuels, but their large-
scale implementation is hampered by high 
production costs [1]. The optimization of 
(photo)bioreactors for biofuel production relies on 
the precise characterization of algal biomass, 
particularly its organic constituents [2]. RAMAN 
spectroscopy is a highly effective technique for this 
analysis [3]. However, fully characterizing these 
compounds in biomass is challenging due to the 
vast number of possible conformers and isomers 
(>10⁴) present in the mixture. A key challenge lies 
thus in differentiating the spectral contributions of 
individual compounds and accurately identifying 
their conformers within complex mixtures [2].  
 
At present, we treat the case of (a, b, g)-carotenoids 
as a case study. First, an experimental investigation 
was carried out to study these compounds in a 
culture of Chlamydomonas reinhardtii microalgae. 
Specifically, a micro-Raman spectroscopy analysis 
was carried out using a Horiba X-plora confocal 
microscopy Raman spectroscopy system, equipped 
with 10× and 50× long-working-distance objectives 
and a charge-coupled device (CCD) detector (see 
Figure 1). The Raman excitation source is provided 
by a 638 nm LED laser beam, with a beam power of 
6 mW, focused on the sample with a spot size of 
approximately 1 μm in diameter at 532 nm.  
 
The next step was to conduct a theoretical study 
combining first-principles techniques with various 
statistical tools to clarify the contributions of the 
different molecular species and relative conformers 
to the measured spectra. First, we predict the 
structure of the various conformers using the GFN-
FF method [4,5,6]. Then, we compute their RAMAN 
spectra using the Density Functional Theory (DFT). 
A subsequent Machine Learning (Linear regression) 
coupled to clustering (k-Means) treatment allows to 
minimize the redundancy in the generated 
conformer dataset. Afterwards, by combining the 
Spectral Angle Mapper (SAM) analysis and Principal 
Component Analysis (PCA), we were able to 
successfully identify the spectral contribution and 
key regions for these conformers (see Figure 1). In 

fact, the comparison of the computed RAMAN 
spectra to that of microalgae (Chlamydomonas 
reinhardtii) allowed the identification of the few (a, b, 
g)-carotenoids conformers present in such biological 
media. 
 
In conclusion, our approach offers a viable 
framework for the rapid analysis of the contribution 
of individual conformers of (α, β and γ)-carotenoids 
and more generally of precursors in algal biomass. 
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Figure 1. A) cluster of α-carotenoid conformers generated 
by the GFN-FF method. B) overlay of the generated 
RAMAN spectra of the theoretically calculated α-
carotenoid conformers, and the experimental RAMAN 
spectra of Chlamydomonas reinhardtii microalgae. C) 
SAM analysis of the RAMAN spectra obtained by DFT of 
the theoretically generated α-carotenoid conformers. D) 
PCA of all generated RAMAN spectra of the theoretically 
calculated α-carotenoid conformers, and the experimental 
RAMAN spectra of Chlamydomonas reinhardtii 
microalgae. 
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Our researches focuses on the custom synthesis 
and characterisation of various nano-objects. One of 
our key manufacturing processes is laser pyrolysis 

[1, 

2]
, which uses a high-power CO2 laser (2 to 3 kW) to 

synthesize nanoparticles in the gas phase. This 
process involves the interaction of the laser with a 
stream of precursors in a controlled atmosphere, 
forming nanoparticles within the laser pyrolysis 
flame. The properties of the resulting nanoparticles 
are determined by the nature and quantities of the 
reactants injected into the reactor. 
 
Currently, nanoparticles are characterized after 
synthesis. If their properties are not suitable, the 
process must be repeated with modified precursor 
injections, wasting considerable time. To address 
this, real-time characterization during synthesis is 
being explored. This involves qualitative analysis 
(identifying elements) and quantitative analysis 
(determining elemental composition) to adjust 
synthesis parameters in real time fly. 
 
Laser-Induced Breakdown Spectroscopy (LIBS) 

[3, 4]
 

can be used to identify and quantify many elements 
at the cost of spectral analysis. However, analysing 
a large number of spectra in real-time requires 
advanced data processing. As this is a classification 
problem, related works show that it is interesting to 
use approaches based on Artificial Intelligence 
(AI) 

[5]
. 

 
More specifically, the approach considered in this 
work was initially developed for infrared 
spectroscopy 

[6]
. It uses a Peak Correlation Classifier 

(PCC) algorithm that includes a Support Vector 
Machine (SVM) classifier. The PCC algorithm 
extracts a vector of correlations between an 
annotated reference spectrum (top spectrum of the 
top left panel of Figure 1) and an unknown spectrum 
(bottom spectrum of the top left panel of Figure 1), 
characterizing the unknown spectrum relative to the 
reference. Several reference spectra, corresponding 
to different atomic elements or concentrations, are 
used to create a database for training the SVM. 
 
Our objective is to adapt the PCC and train the SVM 
classifier to determine the optimal transformation to 
separate data based on whether a spectrum 
contains the atomic or ionic lines of the desired 
element. Then, in real-time, during the synthesis 
process, the SVM algorithm will identify if the 
acquired spectrum contains the desired elements as 

represented in Figure 1. Finally, the algorithm will be 
adapted for quantitative analysis. 
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Figure 1. Schematic diagram of the adapted algorithm 

envisaged for this project 
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There is a global crisis due to the vast consumption 
of non-renewable energy resources and the 
continuous growth of the world economy and 
industrial development. At the same time, our 
climate is affected by the burning of fossil fuels due 
to the emissions of carbon dioxide that have passed 
the record level in the last decade, the so-called 
Global Warming. To solve these problems, there is 
an urgent need to find a new effective, mechanically 
and thermally stable, and non-toxic thermoelectric 
material that can be used in future in thermoelectric 
devices for power generation. 
 
One of the most influential concepts in 
thermodynamics is the dimensional reduction as it 
can simultaneously improve the power factor and 
reduce the lattice thermal conductivity. This started 
with the approach, proposed by Hicks and 
Dresselhaus [1], of the possibility to increase the 
figure of merit Z of certain materials by preparing 
them in quantum-well superlattice structures. Their 
calculations showed that layering has the potential 
to increase significantly the figure of merit of a highly 
anisotropic material such as Bi2Te3 that has 
ascertained their early assumption. This stimulated 
subsequent work on nanostructured thermoelectrics 
to increase the figure of merit [2,3] especially, in the 
layered compounds [4,5]. 
 
A comprehensive study of the thermoelectric 
coefficients of the ε- polytype of InSe and GaSe is 
reported. Three structures have been studied in 
each case; the bulk, nanoplates (7 quadruple layer), 
and monolayer (one quadruple layer). The 
calculations have been done within the framework of 
the density functional theory (DFT) [6,7], where the 
electronic properties were calculated using the full 
potential linearized augmented plane wave method 
as implemented in the Wien2k code [8]. Based on 

these calculations, the evolution of the transport 
coefficient as a function of the chemical potential is 
evaluated with the use of the Boltzmann transport 
theory as implemented in the BoltzTraP code [9].  
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Reverse Monte Carlo is a method originally 
proposed by Pusztai and McGreevy [1,2] for building 
atomic models  consistent with one or more sets of 
structure sensitive experimental data from either x-
ray or neutron scattering. 
By means of randomized atomic movements  
and a selection procedure based on the standard 
Metropolis algorithm, configurations that minimize 

a residual function 
2
 between experimental signals 

and those calculated from the atomic model are 
generated. The final result is a structural model that 
best matches the whole experimental dataset. 
The approach is particularly useful for highly-
disordered materials, e.g. glasses or liquids, for 
which pair distribution functions – directly calculated 
from the experimental S(q) by Fourier transform – 
are insufficient to describe the structure. Additional 
descriptors (e.g. bond-angle distribution, 
coordination, analysis of atom chains) can be easily 
obtained from an atomic model, providing a more 
comprehensive structural characterization. 
 
The RMC approach was also integrated 
into the RMC-GnXAS code [3] (a component 
of GnXAS package developed 
at the University of Camerino for X-ray absorption 
data analysis), which serves the purpose of 
obtaining an atomic model consistent with an 
experimental EXAFS signal. Throughout two 
decades of its existence, the code, originally written 
for the simplest monoatomic systems, has been 
constantly adapted to accommodate more complex 
applications. 
 
In this contribution, total static, neutron and X-ray 
scattering structure factor refinement was introduced 
as an alternative to previously available pair 
distribution function which constrains the long-range 
order. That approach eliminates the necessity 
for deriving partial pair distribution functions (only 
accessible via simulations or expensive 
experimental techniques) for multiatomic systems 
and expands the possibilities of structure analysis 
under extreme conditions (i.e. high pressure or 
temperature). Additionally, a constraint on 
coordination number was introduced as another 
component within the residual function to improve 
the accuracy of structural representation for 

materials where that factor is already well-
established from other studies. 
 
New features within the RMC-GnXAS code were 
validated through the GeO2 glass analysis under 
pressures of 0.0 and 4.3GPa, using experimental 
EXAFS spectra collected at Elettra synchrotron 
radiation facility in Trieste, neutron scattering 
structure factor data from the literature [4,5] 
and local coordination numbers to constrain the 
RMC refinement process. The resulting structures 
are compared with the available literature references 
[4,5,6,7,8]. 
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Abstract  
The challenges of depleting fossil fuel reserves and 
their impacts on the environment have inspired 
substantial research into the efficient production of 
renewable biomass fuels and chemicals over the 
past decade. An emerging strategy for biomass 
production is the formation of C-C bond by 
heterogeneous catalysis of aldol condensation of 
bio-based target molecules such as acetone, furfural 
and 5-hydroxymethylfurfural (HMF).[1] This 
approach can produce larger organic compounds 
such as the C13 furanic adduct 1,5-di-2-furanyl-1,4-
pentadien-3-one (referred to as: FAF) , which can be 
transformed to high-quality diesel fuels by further 
hydrogenation.[2] However, the molecular level 
understanding of the reaction mechanisms at the 
catalysts for the selective production of diesel is still 
scarce.[3] For remediation, we treat the reaction of 
formation of FAF through aldol condensation on the 
most stable phase (0001) of Ru-based catalysts, 
targeting thus understanding the reaction 
mechanism for the large hydrocarbon production.[4]  
Gas phase computations showed that there are 30 
different possible conformations of FAF molecules. 
However, when these molecules were impregnated 
on to the Ru(0001) surface, they are found to 
stabilize through FAF O-Ru (Ru(0001)), and FAF C-
Ru (Ru(0001)) bonding with very few varietry of 
conformations (i.e., parallel, tilted, parallel+vertical 
and diagonal conformers) in contrast to the gas 
phase data. We show that this is due to the chemical 
adsorption of these FAF conformers on the Ru 
active sites of the Ru(0001) slab and the subsequent 
electron and charge transfer induced on adsorbed 
FAFs.  
The calculated lowest interaction distances between 
the FAF O-Ru (Ru(0001)) and FAF C-Ru (Ru(0001)) 
vary from 2.01 Å to 2.54 Å and 2.10 Å to  2.22 Å, 
respectively. In addition, the total energies of these 
30 different FAF at the Ru-slab clearly show that 
several FAF confromers exhibit  similar patterns and 
also strongly stabilized via the above-mentioned 
chemical bonding with the metal slab. This 
screening allowed us to identify the most stable 
configuration of the FAF@Ru slab among the 30 
possible conformers (identified from the gas phase). 
This screening not only reduces the computational 
costs but also significantly drop the activation 
energies, i.e. energy requirements, for the 
production of longer-chain hydrocarbons.  
Besides, the Neuged elastic-band calculations will 
be carried out to examine the in-depth reaction 

mechanism. In particular, we are looking to 
determine the kinetically determining step. Also, 
machine learning methods will be used to find the 
activity relationship between the major intermediate 
and the Ru catalyst by using the accuracy plot of the 
regularized Model. Obviously, this goes through the 
identification of the corresponding transition states 
and reaction barriers on Ru metal and products. Our 
work will suggest the most prominent catalyst for the 
efficient bio-fuel production with less energy barrier 
and cost.  
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Figure 1. Biomass production at the Ru metal surface. 
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Figure 1. Raman spectra of MoS2 vs. Temperature 
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Molybdenum Sulphides (MSs) represent one of the 
most promising non-toxic and inexpensive 
alternatives to the Pt-based catalysts for the 
Hydrogen Evolution Reaction (HER). The design of 
such catalysts is still mainly limited by the difficulty in 
determining their structure [1]. Vibrational 
spectroscopy is a powerful tool to unveil their local 
structural features and can assist in the study of the 
catalytic mechanisms. We investigate the 
temperature-dependent vibrational properties of 
MoS2, such as phonons and Raman activity, by 
combining state-of-the-art Machine Learning-
Interatomic Potentials (MLIPs) with Molecular-
Dynamics (MD) simulations. More specifically, we 
use the Temperature Dependent Effective Potential 
[2] (TDEP) to extract the anharmonic interatomic 
force constants, the phonon lifetimes and the 
Raman activity from canonical sampling at a given 
temperature. To attain an accurate sampling, it is 
performed via Machine Learning-Molecular 
Dynamics (MLMD) simulations, where the MLIP (we 
use the Moment Tensor Potential, MTP [3]) replaces 
the computationally demanding ab initio calculation 
of the atomic forces. The MLIP itself is trained on a 
MoS2 DFT dataset generated via a self-consistent 
iterative scheme of phase space exploration called 
Machine Learning Assisted Canonical Sampling 
(MLACS) [4]. Accordingly, the training datapoints are 
obtained as snapshots of MLMD, by retraining the 
MLIP at each augmentation of the dataset, to 
improve its accuracy, until the error converges. The 
accuracy of the training set (ab initio) and the 
enforcement of a temperature during the MLMD 
runs, ensure that the resulting interatomic force 
constants account for anharmonicity effects. The 
Raman spectra we obtained and their temperature 
dependence are in good agreement with 
experimental values, confirming the effectiveness of 
both the MTP model and the TDEP method. 
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Figure 2. Tdep model truncated to the 3rd order and scheme of 
optimization 
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By performing resonant ARPES measurements and 
SPR-KKR photoemission calculations on Transition 
Metal Selenide, Sulfide we study the interplay 
between different decay mechanisms in resonant 
conditions, radiation-less Raman Auger and 
Classical Auger emissions. Through a method 
proposed by Cini[1] and Sawatzky[2], [3] we can 
determine the on-site Coulomb interaction per 
element in some cases. In this method, one 
compares the energy of the correlation satellite 
associated with the two-valence-hole (VV) Auger 
final state in resonant photoemission with the two-
valence-hole energies without correlations obtained 
from a self-convolution of the single-hole states 
obtained from a non-resonant photoemission 
spectrum. The energy separation between the main 
peaks of the resonantly enhanced spectrum and the 
two-hole spectrum without correlations gives a 
measure of the Coulomb energy [4]. On the 
theoretical front the calculations are performed using 
the SPR-KKR method, which is based on one-step 
model, that incorporates the effect of all matrix 
elements which accounts for the photoemission 
process. In Figure 1 I have showed the experimental 
results of NbS2, for 2p S excitations, to measure Upp 
for the case. Furthermore, we analyze calculated 
ARPES, XAS, element and orbital resolved band 
structure and DOS underlining agreement with 
experimental results and helping with its 
interpretation. 
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Figure 1. Element-specific X-ray absorption spectroscopy 
(XAS) and resonant photoemission spectroscopy 
(ResPES) for the NbS2. The figure shows XAS L2,3-edge 
spectra (right side of panel) and corresponding ResPES 
energy distribution curves (EDCs) for S. The EDCs are 
plotted on a binding energy (EB) scale, with the photon 
energy as the vertical axis. 
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Wheat, one of the most important staple foods 
globally, faces significant challenges to crop yield 
quality and food safety due to contamination by 
Fusarium fungi. Infection of grains with Fusarium not 
only alters the composition of major biochemical 
components, such as carbohydrates, proteins, and 
fats, but also leads to the accumulation of the 
mycotoxin Deoxynivalenol (DON) [1]. As a non-
destructive and rapid analytical method, Near 
Infrared Spectroscopy (NIRS) has been employed to 
screen for the presence of DON in various crops by 
detecting changes in these key biocomponents [2]. 
In this study, we aimed to utilize NIRS to classify 
DON contamination in both unbalanced and 
balanced wheat kernel samples, according to the 
maximum permitted limit set by the European 
Commission (EC). To achieve this, machine learning 
models, such as partial least square discriminant 
analysis (PLS-DA), random forests, support vector 
machines, and extreme gradient boost, were 
developed and combined with variable selection 
techniques to enhance their classification 
performance and interpretability. The outcomes of 
this approach, including model performance and 
variable relevance, will be presented. 
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Abstract

While  angle  resolved  photoemission  spectroscopy
(ARPES)  has  established  itself  as  the  go-to
technique for electronic structure determination and
beyond, there is not to this day a consensus for the
data  treatment  pipeline  when  it  comes  to  the
analysis beyond the simplest axis conversion. With
the variety of detectors that exist in the market and
the fact that each experimental station has its own
specificities,  there  is  also  no standard  also  in  the
data format. This usually means that each and every
photoemission  experimental  station  has  its  own
conventions  for  the  storing  and exploitation  of  the
data.  This  reflects  a  situation  in  which  the
experimental setups are increasingly more complex
setups:  polarization  dependent  momentum
microscopy  [1],  spin-resolved  ARPES  [2],  time-
resolved  momentum  microscopy  [3]  and  micro-
ARPES  [4].  On  the  other  hand,  Igor-pro  is  the
software that the community adopted for its flexibility
and  scripting  option  but  it  comes  with  several
drawbacks:  Igor  language’s  difficult  syntax  and
conventions,  usage  of  proprietary  software,  very
limited  cross-version  compatibility,  MS  Windows
only.  This  means  in  the  context  of  the  very  time
constrained conditions of  a synchrotron beamtime,
quick  analysis  of  the  data  is  nearly  impossible,
hampering  a  quality  decision  making  process.
Cassiopy is an answer to these problematics. It is a
python-based, open-source, cross-platform,  solution
thay  allows for  most  common data  analysis  tasks
beyond  data  viewing.  It  involves  a  dedicated
architecture to accomodate new parsers/loaders to
enable  cross-electron  analyzer  compatibility.  The
analysis methods range from basic image analysis
with  standard  filters  to  more  complex  processing
schemes  so  that  one  can  get  a  quality  on-the-fly
data treatment. Used as a python module it makes
for  efficient  scripting  of  new  functions.  Ultimately
experimentalist  will  be  able  to  use  the  principal
clustering  techniques  to  analyse  ARPES  data
quickly.  The  aim  of  this  presentation  will  be  to
familiarise the audience with this solution.

References

[1] Schüler,  M.  et  al.   Phys.  Rev.  X  12  (2022),
011019.

[2] Rongione,  E.  et  al.  Advanced  Science  10
(2023), 2301124.

[3] Reutzel,  M.,  Jansen,  G.  S.  M.  &  Mathias,  S.
Advances in Physics: X 9 (2024), 2378722.

[4] Iwasawa, H., Ueno, T., Masui, T. & Tajima, S.
npj Quantum Mater. 7 (2022), 1–9.

Figures
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Disorder effects in the Band 

structure of Transition Metal 

Dichalcogenide alloys - AxB1-

xSe2 (A, B= Cr, Mo, W) 
 
Sarath Sasi 

1
, Aki Pulkkinen 

1
, Laurent Nicolaï 

1
, 

Christine Richter 
2,3

, Karol Hricovini 
2,3

, Ján Minár 
1 

 
1
New Technologies Research Centre, University of West 

Bohemia, Pilsen, Czech Republicrganization, Address, 
City, Country (Arial 9) 
2
LPMS, CY Cergy Paris Université, Neuville-sur-Oise, 

France 
3
Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-

Yvette, France  
 

saraths@ntc.zcu.cz 

 
Among the many two-dimensional (2D) materials 
that have gained attention since the discovery of 
graphene, transition metal dichalcogenides (TMDCs) 
stand out as promising candidates for electronic and 
optoelectronic applications. TMDCs, with the general 
formula MX2 (where M = Mo, W, and X = S, Se, Te), 
typically exhibit a distinct bandgap and spin-
polarized bands. Numerous artificial methods have 
been proposed to engineer these properties, 
including chemical doping, strain induction, and 
external electric fields. Recent advancements in the 
synthesis of TMDCs have led to the emergence of 
2D TMDC alloys [1]. This study focuses on the band 
structure of AxB1-xSe2 (where A, B = Cr, Mo, W) 
alloys with varying composition fractions (x). 
The coherent potential approximation (CPA) [2] 
effectively models the average scattering properties 
in homogeneous random alloys and, within the KKR 
formalism, ensures no additional scattering when 
embedding an alloy component. Theoretical 
investigations using the SPR-KKR [3] package, 
employing CPA, reveal novel families of TMDC 
alloys that do not exhibit disorder effects in their 
band structure across different composition 
fractions. Experimentally, we examined the band 
structure of Mo W1−  Se2 alloys (x = 0 to 1) using 
Angle-Resolved Photoemission Spectroscopy 
(ARPES). The experimental results align well with 
the one-step model photoemission calculations 
within the SPR-KKR framework. Investigating these 
disordered systems provides fundamental insights, 
enhancing their potential applications. 
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Abstract 
 

The growing adoption of AI in materials 
characterization demands increasingly large, 
diverse, and unbiased datasets. However, acquiring 
comprehensive steel microstructure data through 
electron microscopy remains resource-intensive and 
often leads to incomplete or imbalanced coverage of 
processing conditions. While generative AI offers a 
promising solution through synthetic data creation, 
validating these artificial microstructures raises 
fundamental questions about authenticity and 
scientific utility. 

Within the AID4GREENEST project [1], we use 
the Ultra High Carbon Steel Database (UHCSDB) [2] 
to explore the entire synthetic data pipeline: from 
generation to validation. Synthetic micrographs are 
produced using a novel, phase- and attribute-aware 
sampling strategy based on real data distributions. 
We assess whether these microstructures 
correspond to realistic phase compositions and 
reflect variations driven by processing conditions 
such as annealing temperature, time, cooling 
method, and magnification. Our study critically 
examines standard AI-based image similarity 
metrics in both pixel and Fourier space, questioning 
their capacity to preserve physical and structural 
properties. These computational validations are 
compared with expert metallurgists’ assessments to 
examine whether current approaches align with 
domain expertise in distinguishing real from 
synthetic microstructures. 

Although our focus is on scanning electron 
microscopy, the core challenges of validating 
synthetic data with domain-specific metrics and 
expert alignment are broadly relevant across data-
driven materials science, including spectroscopy. 
This comprehensive analysis seeks to establish 
robust criteria for evaluating synthetic 
microstructures, ensuring that generated data not 
only resembles real steel samples visually, but also 
retains scientific utility for downstream materials 
analysis. 
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Figures 
 

 
Figure 1. Mapping the microstructure space: Each point 

represents a single micrograph. On the right, a zoomed-in 
micrograph is shown—can you determine if it is real or 
synthetic? 
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Perovskites (ABO3) play a significant role in various 
technologies, including spintronics, solar energy 
systems, and energy-efficient devices. They are 
particularly remarkable for their distinctive 
characteristics, such as ferroelectricity and the 
presence of two- dimensional electron gases (2DEGs) 
at certain interfaces such as LaAlO3/SrTiO3 [1] or 
Fe/SrTiO3 [2, 3]. These interesting properties come 
from tiny changes in the structure either close to the 
surface ( e.g. oxygen vacancies) or deeper in the bulk 
(e.g. octohedral rotations), highlighting the importance 
of accurately probing such a structure. X-ray 
photoelectron diffraction (XPD) is regarded as an 
appropriate method for this analysis. 
However, extracting the most information from 
experimental results needed for a structural 
interpretation requires a complex numerical simulation 
based on the multiple scattering theory. 
 Such a calculation can be performed using the 
MsSpec code [4, 5]. However, when simulating large 
clusters of perovskites (approximately 1000 atoms), 
the resulting spectra exhibit divergence (see Fig. 1 
(a)). To tackle this issue, previous studies proposed 
"Simple renormalization schemes," which were 
effective in avoiding divergence in smaller clusters (for 
instance, a 50-atom Cu (111) system) [6]. 
Nevertheless, this approach proved to be time- 
consuming for large clusters. In this work, we address 
this problem by showing that atomic chains are 
responsible for the poor convergence, and that we 
can greatly improve the simulation by using the G1 
renormalization scheme on one-dimensional atomic 
chains that exist in the cluster. This approach allowed 
the renormalization procedure to be applied more 
effectively to large clusters, and improved the 
calculated XPD spectra for SrTiO3 (STO) when 
compared to the experiment (Fig. 1 (b)). 
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Figures 

 

Figure 1. Experiment and simulation for a cluster of 1920 

atoms. (a) The renormalization (G1) is not used. (b) G1 is 
implemented using an atomic chain in (001) direction. In 
both cases, we employed a scattering path filtering 
technique referred to as “Forward Filtering (FF)” to obtain 
results within an acceptable timeframe. 
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